将猝火后的金属材料的冷却过程继续下去,达到远低于室温的某一温度"C),保持一定时间,然后将温度逐步回升到常温状态的一种消除内应力方法。悴火后的金属材料冷却到常温时,金属材料中含有大量残余奥体,深冷时残余奥体继续转变为马氏体,从而减少金属材料中的残余奥体比例,对工件起到减小猝火应力和增强尺寸稳定性的作用。冰冷处理需要冷冻设备,成本相对较,常用于对精度、稳定性要求很的零件的消除内应力处理。冰冷处理一般安排在工件精加工之前进行。振动时效的实质是以振动的形式给管件施加附加应力,当附加应力与残余应力叠加后,达到或过材料的屈服时,工件发生微观塑性变形,从而降低和均化工件内部的残余应力,并使其尺寸精度达到稳定。
一般多采用金属铸型。,浇入铸型中的熔融金属随铸型速旋转,铸件壁厚度均匀。1)基本概念用易熔材料(如蜡料)制成模样,在模样上包覆若干层耐火涂料,制成型壳,熔出模样后经温焙烧,然后进行浇注的铸造方法称为熔模铸。造熔模铸造又称失蜡铸造。2))熔模铸造工艺过程用钢或铜合金制成,用来制造压型。压型(见图1-姓lb)是用于压制模样的型,一般用钢、铝合金等制成,小批量生产可用易熔合金、环氧树脂、石膏等制成。熔模是可以在热水或蒸汽中熔化的模样。用蜡基材料(常用50%石蜡和50%硬脂酸)制成的熔模称为蜡模。将液态或糊状的易熔模料压入压型制成单个蜡模,然后将若干个单个蜡模黏合在蜡制的浇注系统上,形成蜡模组(型壳的制作工艺是:将蜡模组浸入以水玻璃与石英粉配成的熔模涂料中。
钢材的尺寸变化均在标准规定允许范围之内,对钢材的尺寸精度等X没有影响。管件冷拉过程中,由于塑性变形而使金属晶粒产生滑移、扭曲和破碎,从而在金属内部产生应力。在应力作用下钢材的硬度升,塑性下降出现加工硬化现象,以致不能继续进行变形。为此,必须进行再结晶退火,消除硬化现象,恢复塑性。再结品退火温度,主要取决于金属的再结晶温度。而再结晶温度又随塑性变形程度、化学成分、加热速度、原始组织等因素而变化。对于冷拉轴承钢而言,再结晶温度主要由变形程度和感应加热升温速度两项因素所决定。GCr15冷拉钢材再结晶温度与变形程度的关系表7-40给出了变形程度与再结品温度的关系。随变形程度(压缩率)的增大,开始再结晶温度降低.而完成再结晶温度保持不变。
因其剪切变形大于强度螺栓摩擦型连接,因此不应用于直接承受动力荷载的结构。又因其在荷载作用下产生滑移,所以也不宜用于承受反向内力的连接。对于承受拉力的受拉型强度螺栓连接,由于预拉力的作用,构件间在承受荷载以前已存在挤压力。当强度螺栓受到外拉力作用时,X先要抵消这种挤压力的作用。在克服挤压力之前,对螺栓的预拉力没有大的影响;当构件完全被拉开后,强度螺栓的受力情况与普通螺栓受拉相同。焊接过程是一个局部加热而后逐渐冷却的过程。施焊时,在焊件上产生不均匀的温度场,焊件产生不均匀的变形,从而产生焊接应力。焊接残余应力是指焊接后残留在焊接结构中的应力,它是在没有荷载作用下的内应力,可在焊件内自相平衡,纵向焊接残余应力受力要求。
因其剪切变形大于强度螺栓摩擦型连接,因此不应用于直接承受动力荷载的结构。又因其在荷载作用下产生滑移,所以也不宜用于承受反向内力的连接。对于承受拉力的受拉型强度螺栓连接,由于预拉力的作用,构件间在承受荷载以前已存在挤压力。当强度螺栓受到外拉力作用时,X先要抵消这种挤压力的作用。在克服挤压力之前,对螺栓的预拉力没有大的影响;当构件完全被拉开后,强度螺栓的受力情况与普通螺栓受拉相同。焊接过程是一个局部加热而后逐渐冷却的过程。施焊时,在焊件上产生不均匀的温度场,焊件产生不均匀的变形,从而产生焊接应力。焊接残余应力是指焊接后残留在焊接结构中的应力,它是在没有荷载作用下的内应力,可在焊件内自相平衡,纵向焊接残余应力受力要求。
而非焊接结构对含碳量可降低要求。工作条件:钢材处于低温时容易冷脆,因此在低温条件下工作的结构,尤其是焊接结构,应选用具有良好低温脆断性能的钢。此外,露天结构的钢材容易产生时效,有害介质作用的钢材容易腐蚀、疲劳和断裂,也应加以区别地选择不同材质。钢材厚度:薄钢材棍轧次数多,轧制的压缩比大,厚度大的钢材压缩比小,所以厚度大的钢材不但强度较小,而且塑性、冲击韧性和焊接性能也较差。因此,厚度大的焊接结构应采用材质较好的钢材。对钢材质量的要求,一般地,承重结构的钢材应保证抗拉强度、屈服好处、伸长率和硫、磷的含量,对焊接结构尚应保证碳的含量(由于Q235-A钢的碳含量不作为交货条件,故一般不用于焊接结构)。