上海金琪尔特殊钢有限公司创办于2005年,公司拥有X的管理体系,雄厚的技术力量,完善的质保体系,更拥有现代化生产加工基地及一支技术高、素质好、经验丰富的队伍。公司一直于"质量、信誉"为上的原则
我司自成立以来X销售模具钢材料:塑胶模、压铸模、五金模、冲压模等。公司与多家零售商和代理商建立了长期稳定的合作关系。品种多样化、价格合理。以多品种经营特色和薄利多销的经营理念,赢得了广大客户的认可。
特约经销:日本(住友、日立、大同)、美国肯纳钨钢、德国撒斯特、瑞典一胜佰特殊钢、奥地利百禄、上海宝钢、东北特钢、抚顺特钢、西南铝材、等国内外X厂商
本公司在上海、东莞、宁波、天津均有分布销售及加工网点,覆盖范围在不断扩大,极力缩小运输时长为客户争取更加快速的供货周期。欢迎新老客户来电咨询合作!
D3钢
D3钢,美国高碳、高铬莱氏体钢。具有较高的耐磨性、淬透性、淬硬性、强韧性、热稳定性、抗压强度,微变形和综合性能X良,具有较好的机加工和抗热氧化性能,适应性广泛
D3合金工具钢
对应国产牌号:Cr12
对应日本牌号:SKD1
具有较高的耐磨性,比一般低合 工具钢 高3~4倍,淬火体筥变形小。
我国GB标准钢号Cr12mov、德国DIN标准材料编号1.2601、德国DIN标准钢号X165crmov12、日本JIS标准钢号SKD11、韩国KS标准钢号STD11、瑞典SS标准钢号2310、美国AISI/SAE标准钢号D3。[1]
(850~870) ℃× (3~4)h,随炉冷却,(740~760)℃×(4~5)h 等温,出炉空冷,硬度温度≤241HBS,共晶碳化物≤3X。
温度950~1150℃,油冷淬火,淬火硬度≥60HRC。
a)主要用做硅钢片冲模,用于小动载条件下要求高耐磨、形状简单的拉伸和冲裁模。
b用于制制造弯曲模中要求高耐磨、复杂形状的凸模、凹模、镶块,做凸模、凹模时建议,硬度60~64HCR。
c)用于制造拉延模中要求耐磨的凹模,建议硬度62~64HCR。
d)用于铝件冷抗挤压模的凸模时,建议硬度60~62HCR。
e)用于弯曲含碳量为0.65%~0.80%的弹筑钢板,硬度为60~62HCR。
f)可用于下料模、冲头、滚丝轮、剪刀片、冷墩模、陶土模。
g)可用于热固塑料成型模等。
众所周知,钢中增加碳含量将提高钢的强度,对热作模具钢而言,会使高温强度、热态硬度和耐磨损性提高,但会导致其韧度的降低。学者在工具钢产品手册文献中将各类H型钢的性能比较很明显证明了这个观点。通常认为导致钢塑性和韧度降低的含碳量界限为0.4%。为此要求人们在钢合金化设计时遵循下述原则:在保持强度前提下要尽可能降低钢的含碳量,有资料已提出:在钢抗拉强度达1550MPa以上时,含C量在0.3%-0.4%为宜。H13钢的强度Rm,有文献介绍为1503.1MPa(46HRC时)和1937.5MPa(51HRC时)。
查阅FORD和GM公司资料推荐的TQ-1、Dievar和ADC3等钢中的含C量都为0.39%和0.38%等,相应的韧度指标等列于表1,其理由可由此管窥所及。
对要求更高强度的热作模具钢,采用的方法是在H13钢成分的基础上提高Mo含量或提高含碳量,这将在后面还会论及,当然韧度和塑性的略为降低是可以预料的。
铬:铬是合金工具钢中zui普遍含有的和价廉的合金元素。在美国H型热作模具钢中含Cr量在2%~12%范围。在我国合金工具钢(GB/T1299)的37个钢号中,除8CrSi和9Mn2V外都含有Cr。铬对钢的耐磨损性、高温强度、热态硬度、韧度和淬透性都有有利的影响,同时它溶入基体中会显著改善钢的耐蚀性能,在H13钢中含Cr和Si会使氧化膜致密来提高钢的抗氧化性。再则以Cr对0.3C-1Mn钢回火性能的作用来分析,加入﹤6% Cr对提高钢回火抗力是有利的,但未能构成二次硬化;当含Cr﹥6%的钢淬火后在550℃回火会出现二次硬化效应。人们对热作钢模具钢一般选5%铬的加入量。
工具钢中的铬一部分溶入钢中起固溶强化作用,另一部分与碳结合,按含铬量高低以(FeCr)3C、(FeCr)7C3和M23C6形式存在,从而来影响钢的性能。另外还要考虑合金元素的交互作用影响,如当钢中含铬、钼和钒时,Cr>3%<sup>[14]</sup>时,Cr能阻止V4C3的生成和推迟Mo2C的共格析出,V4C3和Mo2C是提高钢材的高温强度和抗回火性的强化相<sup>[14]</sup>,这种交互作用提高该钢耐热变形性能。
铬溶入钢奥氏体中增加钢的淬透性。Cr﹑Mn﹑Mo﹑Si﹑Ni都与Cr一样是增加钢淬透性的合金元素。人们习惯用淬透性因子加以表征,一般国内现有资料[15]还只应用Grossmann等的资料,后来Moser和Legat[16,22]的更进一步工作提出由含C量和奥氏体晶粒度决定基本淬透性直径Dic和合金元素含量确定的淬透性因子(示于图3中)来计算合金钢的理想临界直径Di,也可从下式作近似计算: Di=Dic×2.21Mn×1.40Si×2.13Cr×3.275Mo×1.47Ni (1) (1)式中各合金元素以质量百分数表示。由该式,人们对Cr﹑Mn﹑Mo﹑Si和Ni元素影响钢淬透性有相当明确的半定量了解。
Cr对钢共析点的影响,它和Mn大致相似,在约5%的含铬量时,共析点的含C量降到0.5%左右。另外Si﹑W﹑Mo﹑V﹑Ti的加入更显著降低共析点含C量。为此可以知道:热作模具钢和高速钢一样属于过共析钢。共析含C量的降低,将增加奥氏体化后组织中和zui后组织中的合金碳化物含量。
钢中合金C化物的行为与其自身的稳定性有关,实际上,合金C化物的结构、稳定性与相应C化物形成元素的d电子壳层和S电子壳层的电子欠缺程度相关[17]。随着电子欠缺程度下降,金属原子半径随之减小,碳和金属元素的原子半径比rc/rm增加,合金C化物由间隙相向间隙化合物变化,C化物的稳定性减弱,其相应熔化温度和在A中溶解温度降低,其生成自由能的绝dui值减小,相应的硬度值下降。具有面心立方点阵的VC碳化物,稳定性高,约在900~950℃温度开始溶解,在1100℃以上开始大量溶解(溶解终结温度为1413℃)[17];它在500~700℃回火过程中析出,不易聚集长大,能作为钢中强化相。中等碳化物形成元素W、Mo形成的M2C和MC碳化物具有密排和简单六方点阵,它们的稳定性较差些,亦具较高的硬度、熔点和溶解温度,仍可作为在500~650℃范围使用钢的强化相。M23C6(如Cr23C6等)具有复杂立方点阵,稳定性更差,结合强度较弱,熔点和溶解温度较低(在1090℃溶入A中),只有在少数耐热钢中经综合合金化后才有较高稳定性(如(CrFeMoW)23C6,可作为强化相。具有复杂六方结构的M7C3(如Cr7C3、Fe4Cr3C3或Fe2Cr5C3)的稳定性更差,它和Fe3C类碳化物一样很易溶解和析出,具有较大的聚集长大速度,一般不能作为高温强化相[17]。
我们仍从Fe-Cr-C三元相图可以简便了解H13钢中的合金碳化物相。按Fe-Cr-C系700℃[18~20]和870℃[9]三元等温截面的相图,对含0.4%C钢中,随Cr量增加会出现(FeCr)3C(M3C)和(CrFe)7C3(M7C3)型合金碳化物。注意在870℃图上,只有含Cr量大于11%才会出现M23C6)。另外根据Fe-Cr-C三元系在5%Cr时的垂直截面,对含0.40%C的钢在退火状态下为α相(约固溶1%Cr)和(CrFe)7C3合金C化物。当加热至791℃以上形成奥氏体A和进入(α+A+M7C3)三相区,在795℃左右进入(A+M7C3)两相区,约在970℃时,(CrFe)7C3消失,进入单相A区。当基体含C量﹤0.33%时,在793℃左右才存在(M7C3+M23C6和A)的三相区,在796℃进入(A+M7C3)区(0.30%C时),以后一直保持到液相。钢中残留的M7C3有阻止A晶粒长大的作用。Nilson提出,对1.5%C-13%Cr的成分合金,欠稳定(CrFe)23C6不形成[20]。当然,单以Fe-Cr-C三元系分析会有一些偏差,要考虑加入合金元素的影响。