沈阳水库闸门系列X销售商欢迎广大用户来电沈阳水库闸门系列X销售商使用启闭机注意事项
使用启闭机注意事项
水库闸门启闭机应注意闸板的上、下启闭位置,不能X限,以免损坏闸门和启闭设备。
启闭机在启闭中如有异常情况必须立即停止使用,及时进行检查修复再操作。
启闭机在关闭时距闸底10公分处需要暂停2分钟,让激流冲净底门槽内杂物,然后再将闸门关闭。
水库闸门启闭机机安装时要保持基础布置平面水平180度,启闭机底座与基础布置平面的面积要达到90%以上,螺杆轴线要垂直闸台上衡量的水平面;要与闸板吊耳孔文和垂直,避免螺杆倾斜,造成局部受力而损坏启闭设备。
水库闸门安装启闭机根据闸门起吊中心线,找正中心使纵横向中心线偏差不X过正负3mm,高程偏差不X过正负5mm,然后在进行浇注二期混凝土或与预埋钢板连接。
水库闸门将启闭机置于安装位置,把一个限位盘套在螺杆上,将螺杆从横梁的下部旋入启闭机,当螺杆从启闭机上方后,再限位盘再用螺杆下方和闸门进行连接。
启闭机基础建筑物安装必须稳固,设备的机座和基础构件的混凝土,按图纸的规定浇筑,在混凝土强度未达到设计强度时,不准拆除和改变启闭机的临时支撑,更不得进行试调和试运转。
起闭机电气设备的安装必须符合图纸及说明书的规定,全部电气设备均可靠的接地。
水库闸门所有起闭机安装完毕,要先对螺杆启闭机进行清理,补修已损坏的保护油漆,灌注脂才能使用
沈阳水库闸门系列X销售商启闭机简单修理
水库闸门启闭机是一种利用螺纹杆直接或者是运用导向滑块、螺杆和闸门门叶相连接,在螺杆上、下的时候开启和关闭闸门的设备,螺杆启闭机在水库灌区河道堤坝以及水力电站之类的工程项目上面的启闭机与闸门大规模应用,下面我们就来介绍一下简单问题的处理
启闭机的操作人员一定要了解螺杆式启闭机的结构、功能以及使用,同时拥有启闭设备操作知识,才能够确保机器的正常运转。
水库闸门在启闭机使用以前,必须对螺旋杆启闭机采取检查的,检查每一个位置的状况是否良好,螺栓是不是松动,电动启闭的中要观察电源线路是否完好,开关是否有问题。
启闭机制动器工作原理
水库闸门启闭机制动器工作原理
启闭机的制动器是产品重要的部件,在每台启闭机的驱动机构中,必须分别设置制动器。在启闭闸门时,制动器是用来调节闸门的下降速度、制动和暂停的制动装置,在启闭机构中,制动器用来吸收运动中的惯性,使其在一定的制动距离内停止行走。启闭机的制动器种类很多,一般根据制动力矩及使用情况来选择,制动力矩不大时,可选用短冲程交流制动器或长冲程交流制动器,制动力矩大用长冲程(或双短冲程)交流制动器。
启闭机顶闸事故原因简介
启闭机顶闸事故主要原因是因为操纵人员工作马虎,没有按闸门操作章程进行先检查,后操纵的步骤操作,或者原来的操纵人员因请假,代班人员在不熟悉启闭步骤和的情况下盲目进行操作。如果是启闭机启闭方向反向,当闸门处在封闭状态时开闸,启闭时按错按钮或人工启闭时摇反方向,把关闭闸门的方向误操纵为开启闸门的方向,也会造成顶闸。如果是在关闭闸门时操纵人员思想不集中、闸门到下限位置未能立即停机也会造成顶闸。有的情况是螺杆的限位螺母、限位开关移位,不起限位作用肯定会造成顶闸事故。有可能的一种情况是启闭机在电器设备或供电线路时电源相序变动,致使启闭机上的电动机改变了原运转方向启闭机启闭方向的改变,此时如果是闸门处在关闭状态下开启,肯定会发生顶闸事故。还有一种非让人为的情况是在闸门运行中,树木等漂浮物或石块等物被高速水流带到闸底或冲到闸槽中卡住,如果此时关闭闸门,当闸门下缘在未到闸底之前已被物阻挡产生反力,但螺杆上的限位标志或限位开关还没有到位,不起限位停机或提醒操纵职员停机的作用,操作人员也没有立即停止操作,启闭机将带动闸门继续下压,当反力X过启闭机或启闭台的承受耐力时,也必然发生顶闸事故。
沈阳水库闸门系列X销售商钢闸门的主梁是钢闸门的主要受力构件之一,主梁高度的确定是钢闸门设计的一个重要内容。合理地选择主梁的高度直接关系到闸门的外形尺寸、重量及经济性。《水利水电工程钢闸门设计规范》SL74-95规定:“实腹式主梁高度的初选,应满足小梁高的要求,并参考经济梁高综合分析而定。”下面就主梁高度的选取进行分析。对“小梁高”计算公式的分析:1小梁高1)《水工钢闸门设计》书中根据刚度要求,对受均布荷载的等截面简支梁,可由挠度计算公式计算:2f=5σl24Eh(1)在上式中令σ=[σ],f=[f]带入式(1)即求得满足刚度要求的小梁高公式:hm in=5[σ]l224E[f](2)式中:[σ]为容许应力;[f]为容许挠度;E为弹性模量;l为计算跨度。这样可以很清楚地看到小梁高hm in只是计算跨度l2的函数,与计算荷载没有关系,这显然不合理,所以该小梁高计算只能作为初选梁高时参考,它已经没什么实际意义了。2经济梁高经济梁高的计算公式为概述横拉门具有双向挡水特性,启闭快捷、迅速[1],主要应用于各船闸的挡水口门.门体结构由两侧的挡水面板、横向桁架、纵桁架、次梁、浮箱和台车等组成,是一种上、下游空间对称的桁架结构.横向桁架包括主桁架和顶、底桁架,纵桁架包括端桁架和竖向桁架,如图1所示.为了实现门体结构的横向启闭,在横拉门门体上下两侧分别设有顶、底台车,如图2所示.顶台车通过吊架与顶桁架相连,下方则放置于底台车上,通过启闭机驱动顶台车实现横拉门的启闭[2].门体重量由顶、底台车承担.闸门结构设计主要有平面设计法和空间设计图1横拉门门体结构图法[2]两种.平面闸门设计法作为传统的闸门设计方法,设计时将水压力分配到横拉门各个部分,单X计算各部分的结构设计.该方法的缺点是在进行闸门设计时,未充分考虑横拉门桁架结构的空间整体性,忽图2横拉门台车布置图略了各桁架间的相互影响.也因此,近年来促成了以计算机软件如ANSYS等为主要计算工具的闸门空间设计法的发展.空间设计法是将.为满足灌区信息化建设需要,本文在全面总结归纳前人在水力自动闸门研究成果的基础上,针对水力自动闸门在实际应用中存在的不足,以低功耗和可控性为.研究目标,提出了浮筒式水力自动控制闸门,并通过水工模型试验研究了该类闸门的水力特性和控制特性。此项研究成果不仅有着重要的实用价值,而且对提高我国灌区信息建设及管理水平有着重要意义。论文主要研究内容及成果如下:(1)全面系统地分析了水力自动闸门在实际应用中存在的问题,指出稳定性不够和控制性较差是影响其难以普及的根本原因,而自动控制闸门的稳定性和控制性明显X于水力自动闸门但它确需要动力供电系统,在相对偏远的地区如果专门架设供电线路虽不存在技术问题,但从经济效益上分析是不划算的。为此,本文在继承二者X点基础上,提出了浮筒式水力自动控制闸门,该类闸门在限度地借助水的浮力的同时,又保存了闸门的控制功能,保证了闸门的稳定性和灵活性,但它并不需要动力供电系统,只要借助微型供电系统(如太阳能等)就能?概况弧形闸门是水利水电工程中普遍采用的门型之一,具有结构简单、启闭力小、操作简单、水流条件好等X点。因此,在泄水建筑物中,尤其是高水头、高流速状态下使用的更为普遍,能够X的降低气蚀对门槽造成的损害以及因局部开启造成的振动等。目前水利行业采用的计算机辅助设计软件仍然以Auto CAD的二维平台为主,在此平台下,设计者X先要在头脑中想象出弧形闸门的实体结构。需要具备X的三维空间想象力,并对弧形闸门足够熟悉,才能比较顺利的绘制出弧形闸门的二维图。对于表孔弧形闸门,以斜支臂结构二维图的绘制为复杂。斜支臂夹角、扭角等数据都要经过详细的计算才能确定,然后绘制于二维图中,从想象中的三维实体到图纸上的二维平面图绘制,过程复杂。三维设计软件在近几年的工程设计中运用的越来越普遍,它的X势在于能够直接将设计目标用三维的视角呈现给设计者,实现目标物体的可视、可测。这样一来,之前介绍的斜支臂夹角、扭角等复杂数据不用计算就能从所建模型中直接测得引言2水利枢纽发电厂房布置设计的原则水利枢纽发电厂房是一种在生产工艺设计方面和操作技2.1主厂房及主厂房尾水渠位置术层面上具有较高要求的工业厂房。它之所以与普通的民用(1)主厂房的位置,对于坝后式厂房应尽量靠近拦河坝,对建筑不同,就是因为它的设计会对其整体的布局结构、空间构于引水式厂房应尽量靠近前地或调压室,如此可以减少投资,造以及施工工艺的流程和难易程度直接挂钩。所以,必须重视降低水锤的压力,以及改善机组整体的运行条件;主厂房应建对水利枢纽发电的厂房设计。在条件良好的地基上,且考虑外部交通环境,确保在施工时可1水利枢纽发电厂房的结构以不受外部干扰。(2)为防止下游水位的波动对机组运行产生1.1上部结构干扰,主厂房的尾水渠应远离泄洪洞的出口,而且要使尾水和以水轮发电机的上机架所在的楼板面为界,以上为上部河道中的水顺利的对接,如此能保证河道不会淤积泥沙,此结构。水利枢纽发电厂房的上部结构包括屋顶、排架柱、吊车外,为了降低工程耗费和使用水力自动控制闸门,可以根据灌溉渠道的运行信息实现渠道水位、流量的控制,从而满足用户用水需要。而在洪水时期,利用水力自动控制闸门还能通过从渠道中引水改善输水效率,并实现水资源的高效利用。但想要达成这一目标,还要确保闸门运行稳定。因此,相关人员还应加强水力自动控制闸门运行稳定问题的分析,以便实现节制分水闸的合理利用。1工程概况在2014年新疆玛纳斯河灌区节水改造工程中,需完成东岸大渠8 km过河涵洞段项目的建设。在该项目施工过程中,需完成0.93 km引水明渠建设,并完成节制分水闸的建设,以实现灌溉渠道水力的自动控制。而该工程需要从跨马河渡槽引水,为满足生态水系的水质要求,还需对跨马河河水进行沉砂处理,即在跨马河渡槽上游引水渠道上完成沉砂池布置。受跨河建筑物的限制,需确保沉砂池处理能力达到渠道引水流量,所以沉砂池设计流量为18 m3/s[1]。此外,为满足渡槽上游引水渠道退洪40 m3/s要求,校核流量需达到40 m3/s。